386 research outputs found

    Circumventing the eta problem in building an inflationary model in string theory

    Full text link
    The eta problem is one of the most significant obstacles to building a successful inflationary model in string theory. Planck mass suppressed corrections to the inflaton potential generally lead to inflaton masses of order the Hubble scale and generate contributions of order unity to the eta slow roll parameter rendering prolonged slow roll inflation impossible. We demonstrate the severity of this problem in the context of brane anti-brane inflation in a warped throat of a Calabi-Yau flux compactification with all phenomenologically dangerous moduli stabilized. Using exact numerical solutions we show that the eta problem can be avoided in scenarios where the inflaton is non-minimally coupled to gravity and has Dirac-Born-Infeld (DBI) kinetic term. We show that the resulting cosmic microwave background (CMB) observables such as measures of non-gaussianites can, in principle, serve as a probe of scalar-gravity couplings.Comment: 8 pages, 3 figures; title changed and reference added to match published version in PR

    Brane Induced Gravity: Codimension-2

    Full text link
    We review the results of arXiv:hep-th/0703190, on brane induced gravity (BIG) in 6D. Among a large diversity of regulated codimension-2 branes, we find that for near-critical tensions branes live inside very deep throats which efficiently compactify the angular dimension. In there, 4D gravity first changes to 5D, and only later to 6D. The crossover from 4D to 5D is independent of the tension, but the crossover from 5D to 6D is not. This shows how the vacuum energy problem manifests in BIG: instead of tuning vacuum energy to adjust the 4D curvature, generically one must tune it to get the desired crossover scales and the hierarchy between the scales governing the 4D \to 5D \to 6D transitions. In the near-critical limit, linearized perturbation theory remains under control below the crossover scale, and we find that linearized gravity around the vacuum looks like a scalar-tensor theory.Comment: 16 pages latex, 2 .eps figs, based on the talks given at the "Sowers Workshop", Virginia Tech, May 14-18, 2007, "Cosmology and Strings" workshop at ICTP, Trieste, Italy, July 9-13, 2007, "Dark Energy In the Universe", Hakone, Japan, Sep 1-4, 2007 and "Zagreb Workshop 2007", Zagreb, Croatia, Nov 9-11, 2007; v2: added reference

    On Bouncing Brane-Worlds, S-branes and Branonium Cosmology

    Full text link
    We present several higher-dimensional spacetimes for which observers living on 3-branes experience an induced metric which bounces. The classes of examples include boundary branes on generalised S-brane backgrounds and probe branes in D-brane/anti D-brane systems. The bounces we consider normally would be expected to require an energy density which violates the weak energy condition, and for our co-dimension one examples this is attributable to bulk curvature terms in the effective Friedmann equation. We examine the features of the acceleration which provides the bounce, including in some cases the existence of positive acceleration without event horizons, and we give a geometrical interpretation for it. We discuss the stability of the solutions from the point of view of both the brane and the bulk. Some of our examples appear to be stable from the bulk point of view, suggesting the possible existence of stable bouncing cosmologies within the brane-world framework.Comment: 35 pages, 7 figures, JHEP style. Title changed and references adde

    Evaluation of denoising strategies to address motion-correlated artifacts in resting-state functional magnetic resonance imaging data from the human connectome roject

    Get PDF
    Like all resting-state functional connectivity data, the data from the Human Connectome Project (HCP) are adversely affected by structured noise artifacts arising from head motion and physiological processes. Functional connectivity estimates (Pearson's correlation coefficients) were inflated for high-motion time points and for high-motion participants. This inflation occurred across the brain, suggesting the presence of globally distributed artifacts. The degree of inflation was further increased for connections between nearby regions compared with distant regions, suggesting the presence of distance-dependent spatially specific artifacts. We evaluated several denoising methods: censoring high-motion time points, motion regression, the FMRIB independent component analysis-based X-noiseifier (FIX), and mean grayordinate time series regression (MGTR; as a proxy for global signal regression). The results suggest that FIX denoising reduced both types of artifacts, but left substantial global artifacts behind. MGTR significantly reduced global artifacts, but left substantial spatially specific artifacts behind. Censoring high-motion time points resulted in a small reduction of distance-dependent and global artifacts, eliminating neither type. All denoising strategies left differences between high- and low-motion participants, but only MGTR substantially reduced those differences. Ultimately, functional connectivity estimates from HCP data showed spatially specific and globally distributed artifacts, and the most effective approach to address both types of motion-correlated artifacts was a combination of FIX and MGTR

    A 3D searchable database of transgenic zebrafish gal4 and cre lines for functional neuroanatomy studies

    Get PDF
    Citation: Marquart, G. D., Tabor, K. M., Brown, M., Strykowski, J. L., Varshney, G. K., LaFave, M. C., . . . Burgess, H. A. (2015). A 3D searchable database of transgenic zebrafish gal4 and cre lines for functional neuroanatomy studies. Frontiers in Neural Circuits, 9(November), 1-17. doi:10.3389/fncir.2015.00078Transgenic methods enable the selective manipulation of neurons for functional mapping of neuronal circuits. Using confocal microscopy, we have imaged the cellular-level expression of 109 transgenic lines in live 6 day post fertilization larvae, including 80 Gal4 enhancer trap lines, 9 Cre enhancer trap lines and 20 transgenic lines that express fluorescent proteins in defined gene-specific patterns. Image stacks were acquired at single micron resolution, together with a broadly expressed neural marker, which we used to align enhancer trap reporter patterns into a common 3-dimensional reference space. To facilitate use of this resource, we have written software that enables searching for transgenic lines that label cells within a selectable 3-dimensional region of interest (ROI) or neuroanatomical area. This software also enables the intersectional expression of transgenes to be predicted, a feature which we validated by detecting cells with co-expression of Cre and Gal4. Many of the imaged enhancer trap lines show intrinsic brain-specific expression. However, to increase the utility of lines that also drive expression in non-neuronal tissue we have designed a novel UAS reporter, that suppresses expression in heart, muscle, and skin through the incorporation of microRNA binding sites in a synthetic 3? untranslated region. Finally, we mapped the site of transgene integration, thus providing molecular identification of the expression pattern for most lines. Cumulatively, this library of enhancer trap lines provides genetic access to 70% of the larval brain and is therefore a powerful and broadly accessible tool for the dissection of neural circuits in larval zebrafish. © 2015 Marquart, Tabor, Brown, Strykowski, Varshney, LaFave, Mueller, Burgess, Higashijima and Burgess

    Zero modes of six-dimensional Abelian vortices

    Full text link
    We analyze the fluctuations of Nielsen-Olesen vortices arising in the six-dimensional Abelian-Higgs model. The regular geometry generated by the defect breaks spontaneously six-dimensional Poincar\'e symmetry leading to a warped space-time with finite four-dimensional Planck mass. As a consequence, the zero mode of the spin two fluctuations of the geometry is always localized but the graviphoton fields, corresponding to spin one metric fluctuations, give rise to zero modes which are not localized either because of their behaviour at infinity or because of their behaviour near the core of the vortex. A similar situation occurs for spin zero fluctuations. Gauge field fluctuations exhibit a localized zero mode.Comment: 45 pages in Revtex style with 4 figure

    Galileon Hairs of Dyson Spheres, Vainshtein's Coiffure and Hirsute Bubbles

    Full text link
    We study the fields of spherically symmetric thin shell sources, a.k.a. Dyson spheres, in a {\it fully nonlinear covariant} theory of gravity with the simplest galileon field. We integrate exactly all the field equations once, reducing them to first order nonlinear equations. For the simplest galileon, static solutions come on {\it six} distinct branches. On one, a Dyson sphere surrounds itself with a galileon hair, which far away looks like a hair of any Brans-Dicke field. The hair changes below the Vainshtein scale, where the extra galileon terms dominate the minimal gradients of the field. Their hair looks more like a fuzz, because the galileon terms are suppressed by the derivative of the volume determinant. It shuts off the `hair bunching' over the `angular' 2-sphere. Hence the fuzz remains dilute even close to the source. This is really why the Vainshtein's suppression of the modifications of gravity works close to the source. On the other five branches, the static solutions are all {\it singular} far from the source, and shuttered off from asymptotic infinity. One of them, however, is really the self-accelerating branch, and the singularity is removed by turning on time dependence. We give examples of regulated solutions, where the Dyson sphere explodes outward, and its self-accelerating side is nonsingular. These constructions may open channels for nonperturbative transitions between branches, which need to be addressed further to determine phenomenological viability of multi-branch gravities.Comment: 29+1 pages, LaTeX, 2 .pdf figure

    Smooth tensionful higher-codimensional brane worlds with bulk and brane form fields

    Get PDF
    Completely regular tensionful codimension-n brane world solutions are discussed, where the core of the brane is chosen to be a thin codimension-(n-1) shell in an infinite volume flat bulk, and an Einstein-Hilbert term localized on the brane is included (Dvali-Gabadadze-Porrati models). In order to support such localized sources we enrich the vacuum structure of the brane by the inclusion of localized form fields. We find that phenomenological constraints on the size of the internal core seem to impose an upper bound to the brane tension. Finite transverse-volume smooth solutions are also discussed.Comment: 1+14 pages, 2 figures; section 2.3 improved, typos corrected and references added. Published versio

    Quasinormal Modes of AdS Black Holes and the Approach to Thermal Equilibrium

    Get PDF
    We investigate the decay of a scalar field outside a Schwarzschild anti de Sitter black hole. This is determined by computing the complex frequencies associated with quasinormal modes. There are qualitative differences from the asymptotically flat case, even in the limit of small black holes. In particular, for a given angular dependence, the decay is always exponential - there are no power law tails at late times. In terms of the AdS/CFT correspondence, a large black hole corresponds to an approximately thermal state in the field theory, and the decay of the scalar field corresponds to the decay of a perturbation of this state. Thus one obtains the timescale for the approach to thermal equilibrium. We compute these timescales for the strongly coupled field theories in three, four, and six dimensions which are dual to string theory in asymptotically AdS spacetimes.Comment: 25 pages, 9 figures extended discussion of horizon boundary conditions, added note on higher l mode
    • …
    corecore